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Abstract

The linear response theory using a complete set of dynamic variables
involving density, velocity and energy fluctuations is used to analyze the
Rayleigh-Brillouin spectrum of a viscoelastic liquid. An exact equation in-
cluding the effect of structural relaxation has been obtained. The result
is discussed in the fast and slow relaxation limits. In the former case,
the Rayleigh-Brillouin spectrum is identical to that predicted by the classi-
cal hydrodynamic equations, whereas in the latter case a new structural cen-
tral peak is found, in addition to the anomalous dispersion and relaxation
effects present in the frequency and linewidth data associated with the Bril-
louin peak. The evolution of structural relaxation and its effect on the en-
tire Rayleigh-Brillouin spectrum is described. The structural central peak
is most pronounced with the frequency dispersion and the linewidth maximum

are present. The theoretical result has been used to calculate the Rayleigh-

Brillouin spectra of polypropylene glycol at various temperatures. The re-
sults of the frequency shift, the spectral linewidth and the Landau-Placzek

ratio are in good agreement with the experiment.
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I. Introduction

The study of molecular dynamics of a viscoelastic liquid using
the Rayleigh-Brillouin scattering technique is of current research
interest. Rayleigh-Brillouin scattering arises from density fluctu-
ations and the scattering spectrum contains information about the
translational motion of an ensemble of molecules. In a viscous molec-
ular liquid consisting of polymeric molecules, interactions between
molecules as well as between segments of the same molecule play a very
important role in the Rayleigh-Brillouin spectrum. In such a system,
a considerable frequency dispersion as well as a maximum in the line-
width of the Brillouin doublet are known tooccur.1 Accompanied with
the frequency dispersion and linewidth anomalv, one also finds sig-
nificantly more intensity distributed in the region between the un-
shifted Rayleigh and Brillouin peaks than that found in a simple
molecular liquid. These experimental results cannot be accounted for
in terms of the classical hydrodynamic theory of simple fluids.2

To explain the anomalous sound dispersion and attenuation maximum
of a highly viscous liquid, Isakovich and Chaban3 have provided a phe-
nomenological theory in which the viscous liquid is modeled as a "micro-
inhomogeneous medium" consisting of several regions. The occurrence of
diffusion and energy exchange mechanisms between different regions of the
medium is shown to be responsible for the attenuation of the hypersonic
wave. Although this theory can qualitatively account for the dispersion
and attenuation phenomena of the hypersonic wave in polymeric liquids.a
it does not have a satisfactory statistical mechanics foundation.

We have recently used the linear response theory to analyze the

Brillouin scattering results of bulk liquid polypropylene glycols (PPG)




2
and polyethylene glycols (PEG). The analysis was carried out using a
two coupled variables (density and velocity) theory, and the theoreti-
cal result was found capable of giving a satisfactory interpretation
of the frequency dispersion and linewidth data in both PPG5 and PEG.6
It was shown that the second moment of the intersegmental interaction
potential and its associated relaxation dynamics are responsible for
the anomaly found in the linewidth and frequency shift of the Brillouin
peak. The theoretical results cannot, however, account for the entire
Rayleigh-Brillouin spectral distribution, due to the fact that energy
fluctuation is not included in the theoretical analysis.

In this paper, we report the result of a complete theoretical anal-
ysis of the Rayleigh~Brillouin scattering spectrum using the linear re-~
sponse theory. This theoretical result includes the energy fluctuation
and is applicable not only to the frequency shift and linewidth data of
a polymeric liquid but also to the intensity ratio between the Rayleigh
and Brillouin components. We also show how the structural relaxation
mechanism can give rise to a new central peak. This new central peak
is due to coupling between the translation and the structural rearrange-
ment motion in a viscoelastic liquid. We draw an analogy between this
dynamic structural central peak and the central peak associated with the
structural phase transition in ferroelectrics and the translation rota-
tion coupling in orientationally disordered solids. We show how the

central peak disappears in the limit of fast modulation.

II. Theory
For a viscoelastic liquid made up of a collection of identical
scattering elements, the isotropic part of the Rayleigh-Brillouin spec-

trum observed at scattering angle 06 is determined bv the qth mode of
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the Fourier transform of the time correlation function of density fluc-
tuations given by
C,p(a,0) = $0(q,t)80"(4,0)> ' (1)

where 8p(q,t) is the qth mode of the fluctuation of demsity, q being
the scattering vector whose amplitude is given by |q| = %Fl sin %.
Here Ai is the wavelength of the incident light and n bei;; the index
of refraction of the liquid. In this section, we shall studv the
density fluctuation in viscoelastic liquids by calculating the qth
modé of the densityv fluctuation spectrum.

For an isotropic fluid system, it is easy to see bv symmetrvy con-
siderations that density (8p), velocity (V) and energy (Se) fluctuations

form a set of three dynamic variables, which do not couple to any other

variables. These are given respectively by

5o = ¢ e'9% (2)
3 I
- 1qz '
V=t z.ed% (3)
j ]
Sem Thm (k2 +3 2452 +% 1 U Je' ) |
t
where in Eqs. (2)-(4) the direction of the scattering vector q is chosen ’
to be along the z-direction. xj. yjand z, are the coordinates of the <

] i
jth scatterer. In a polymeric fluid these can be regarded as the coor- '

dinates of the jth segment of a polymer chain. V is the component of
velocity in the direction of q, as the transverse components will not
be coupled to the density fluctuation and thus have no effect at all on
the polarized Rayleigh-Brillouin spectrum of an isotropic fluid system.7
Uij is the interaction potential between scatterers i and j. In Egs.

(2)=(4), the q dependence in 8p, V and §c is not written out explicitly.
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The set of variables defined in Eqs. (2)=~(4) (5p, V, 8e) gives rise
to the collective motion of a sound wave. The dynamic behavior of the
collective variables are mostly conveniently described by relaxation
functions determined by variables not included in §p, V, and §e. To
analyze the effect of relaxation on §p, V and 8¢, we use the Zwanzig-
Mori formalism.8 We shall show that the final equations obtained are
capable of describing the sound dispersion and attenuation behavior
in a polymeric liquid. We shall also show that in the limit of fast

relaxation the equations reduce to the usual hydrodynamic results.

A) Dynamic equations

We start from the assumption that for the time scale of interest,
the dynamics of the system is governed by the evolution of the set of
secular variables {(Sp, V, Se}. We use the Zwanzig-Mori projection
operator technique to calculate the motion of secular variables. Be-
fore proceeding, we note that the quantity <Sedp*> is non-zero. There-

fore, we use, instead of §p, V and Se, a set of orthonormal variabies

A given by
€1
A= &2 (5)
€3
where
g1 = 8o/ <80]2>" (6)
G2 = v/ V|25 M
£y » [—2E—r - ng,] et (8)
3 | se |25 17 V1-n2
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n = ; 9)
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From the definition given above, one has <§»A+> -}, where I is

a 3 x3 unit matrix. The angular brackets indicate an ensemble average.

We show in Appendix I that if local equilibrium is assumed £3 is pro-
portional to the temperature fluctuation.

For the colummn vector A of dynamic variables, the equation of
motion is given formally by the Liouville equation

"

2 A(e) = 1La(0) (10)

where L 1s the classical Liouville operator governing the time
evolution of A(t). While it is straightforward to write down a
formal expression for L in terms of the kinetic and potential energy
operators of the system, in practice this is seldom done for a com-
plex molecular system such as a polymer, due to its large number of
internal degrees of freedom and the intermolecular and intramolecular
potential functions. For the present work it is only necessary to
utilize the formalistic symmetry properties of the Liouville operator
such as time reversal, reflection and translation symmetry. In its
formal definition the Liouville operator is self-adjoint.

Following the well known procedure the equation of motion for

8
A(t) can be shown to follow a generalized Langevin equation,

t
%é(t) = 1Q4(c) - [ dt K(t)+A(t-t) + F(t) (11)
- T

*—.—..—
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where the frequency matrix is given by

Q= <(I‘é)‘i\+> . (12)
other quantities are given by

+

K(t) = <F(OF > (13)

F(x) = o Tp (14)

F = iQLA (15)
where Q = (1-P), P being the projection operator defined as

PG = <GA’ > <aat >y (16)

7

In the small q limit, Eq. (l4) can be approximated by

F(t) = ot F (17)

Substituting Eq. (5) into Eq. (12), and with the help of Eqs. (6)-(8),

we obtain the frequency matrix

(0] wT Q
ge f % 0 @ - (18)
0 S* 0
where
Nk‘r\l’ 2
op = (S5 <lsol® 19)

Equation (19) reduces to the well known result q(px'm(.r)-Li in the
small q limit. Here Xp is isothermal compressibility.

The parameter S is given by




7
1 <(LV)Se*> s
e Lo DIMER N PATR by

and is real only in small q limit. We shall show shortly that S
is related to the difference between the isothermal and adiabatic
sound frequencies.

The dissipation part can be calculated bv the following. Accord-

ing to Eq. (15), one can readily find that

0
F = QiLA = {LA - iQA = £, (21)
< < = = i
where
£, = iL&; - dugfy - isg; (22)
and
f3 = dLEg ~ 1S%¢, (23)

Thus the memory function matrix K(t) has the general form,

0 0 0
K(t) = O Kaz(r) O (24)
0 0 K33(1)

where Kyp(t) = <f£(1t)£,%> and K33(t) = <f3(t)f3*>. Kjy3(1) and K33(t)
vanish at =0 and are assumed to be negligible at finite t.

Equation (11) together with the frequency matrix given in Eq.
(18) and the memory function matrix given in Eq. (24) can be solved
by the Laplace transform technique. Taking the Laplace transform

on both sides of Eq. (11), we obtain,

X(2)A(z) = (2I - 1 + K(2)] A(z) = A(0) + F(2) (25)
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where A(%) and K(z) arethe Laplace transforms of A(t} and K(t),
respectively. The expression for X(z) is given by
2 -iu.r (o]
§(Z) - -iwg z+K5, (2) -is (26)
0 -is* 2+K33(z)

The Rayleigh-Brillouin speccral density is equal to the real part

of <€1(2)E %> _ Thus we only need calculate this quantity from

i
Eq. (25). From Eq. (25) and also using the fact that <F(z)§;*> = 0,

we obtain after some calculation,
<g1(2)g1*> = —.1—;- {(z +Ky2(2)) (z +K33(2)) + $2) (27)
where | X | is the determinant of §(z), and is given by
| x| = [2(z2+Ky,(2)) +w 2] [z +K33(2)] + 287 (28)
The Rayleigh-Brillouin spectral density is thus equal to

I(q,) = Re<ty(2)E1*> _,

lz +K2(2)) [z +K33(2)] + S2
= Re (29)
[2(z +Kp2(2)) + wp?1(z +R33(2)] + 282), o

Equation (29) is the dynamic equation describing the density-
density fluctuation. This equation will be used to interpret the

Rayleigh-Brillouin spectra of a viscoelastic liquid in Section IV.

B) Adiabatic frequency

Before proceeding to study the property of the dynamic equationm,
we want to associate the quantity S with the well known physical

quantity. One can relate the quantity S to adiabatic sound frequency




by diagonalizing Eq. (18). This gives rise to three eigenvalues

<%
A, /@2 *582 - o (30)
A= —/5;2—:8—2 e (31)
Ao = (Q (32)

The corresponding normalized eigenvectors are found to be

3
w
s
ot = —1— +1
+ p— t (33)
\ S
w
s
and
S
Yg
¢o - 0 (34)
o
w
s

In the absence of relaxation effects, g, can be expressed in

terms of ¢t and ¢° as

w W,
51-.__.6_L§ .—1_.(_;.¢++_!¢_+./.§¢ ) (35)
<l§0|2> /7 ws ws ws o]

The eigenvectors ¢ + and ¢_ are associated with undamped acoustic
waves propagated with frequency wg and —wg respectively. The third
eigenvector ¢° is associated with the unshifted Rayleigh central peak.

The intensity of each peak is proportional to the square of the co-
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efficient of the corresponding eigenvector. Thus, with the help of
Eq. (35), we obtain the Landau~Placzek ratio as

I 52 wSZ

C

Since the Landau-Placzek ratio in the absence of relaxation is

equal to y-l, where y is cp/Cv, it follows immediately the result

G, ™ /;bT' which is the adiabatic sound frequency.

III. Effect of Relaxation

To consider the effect of relaxation we need return to Eq. (29).
The resonance property of I(g,m) depends significantly on the quanti-
ties Kp(iw) and K33(iw) as well as the values of w, and .. This
can be seen by equating to zero the denominator on the right hand side

of Eq. (29) after setting z = iuw,

(10)3 + (10)2 D2@w) +A3(] + e WAz + 02 +

wp?Az(w) =0 (37
where
AL (w) = K, (lw) -r e 19t ¢ (e)de (38)
i ii 5 i1

Because of Eq. (38), Eq. (37) is in general a complex equation
of frequency and does not yield a simple solution. Nevertheless, it
can be shown that in the limit of small q, the memory function is a

decaying function of time and for simplicity can be approximated as

-t/t
Kii(t) =ae i (39)

where a, = Kii(o), and A are the correlation times given by

e i S S —
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1 o
T, = = K, (t)dt 40)
i kii(o) jo ii

In this approximation, we obtain from Eq. (38)

'y
Ay Mg T+iut, (41)

Using Eq. (41), one sees that Eq. (37) is at least fourth order
in w, and it leads to a four peak structure in the Rayleigh-Brillouin

spectrum, We now consider two limiting cases.

A) Fast relaxation, 1/1i >w st

In this case Ai becomes o, Ty and Eq. (37) reduces to

(iw)3 + (1w)2 [azTy + a373] + ({w) [a2r2a3r3-+u82] +
NT2u313 =0 (42)

which is exactly the results obtained from the linearized equations of
hydrodynamics? Rayleigh-Brillouin scattering spectra predicted by
this equation have been discussed exten%ively in the literature.
Equation (42) has three roots: two correspond to the Brillouin
side bands and one to the unshifted Rayleigh peak. For most liquids the
condition wg >> @, T, (i = 2,3) applies, and one can obtain the three

roots of Eq. (42) by a perturbation technique. The results are given
by
W oege +12 (1= ) agrs + agtsl (43)
p Uy 2 Y 373 272

1
- iY @373 (44)

Thus we note that in the fast relaxation limit, due to the large

value of 1/1'i (1 = 2 or 3) the peak frequency of the sound wave is de-

i

i
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termined by wg and its width by @, Ty The width of the unshifted
Rayleigh peak is determined only by a3r3/Y.

/i
To give a comparison with the hydrodynamic result, one makes
the following identifications:
asTr + D 2 (45)
272 v

where Dv and DT are the longitudinal kinematic viscosity and the
thermal diffusivity, respectively. These are related to shear

viscosity ( ns). bulk viscosity ( nv) and thermal conductivity (i) by

4
D, = (nv +3 nﬁ)/mg3 47
DT-XM%% | (48)

Here the various symbols have their usual meanings. i
Using the expressions for Kii(t) (Eqs. (22) and (23)) one can
also obtain microscopic expressions for the transport coefficients.
The microscopic expressions for the transport coefficients have been
given in the literature. The dynamics of the density fluctuation in 2%

9 y .
the fast relaxation limit was first discussed by Mori. =

B) Slow relaxation, '/tp <uwZug

This is the relevant case for most viscous liquids, and under-
standing of this case is necessary for analysis of the Rayleigh-
Brillouin data in polymeric liquids.

Since the dynamics of thermal conductivity processes has only a

negligible effect on the relaxation behavior of the sound wave, the
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frequency dependence of Aj; can be ignored. Thus one can set

X3 = G3T3 (‘09)
and
@272
A ® 1+im'1’2 (50)

where T, will be referred to as the structural relaxation time.

One further substitutes Eqs. (49) and (50) into Eq. (37) to find its
solution for w. The computer calculation of the spectrum using the
exgct expression, Eq. (29), has shown that ay (i=2,3) is only a
fraction of wsz for a polymeric liquid (see Section IV). Therefore,

Eq. (37) can be solved as a perturbation of ui/msz. The perturbation

solution of Eq. (37) to first order in ai/ws2 (i=2,3) gives four roots

wy "% a3ty = 1Dq? (51)

2
azwstz i

e Sl 2y 2
2[1-+(msrz) ] 2[1-¥(wsr2) ]

1 (52)
{agt, + (1 - ¥ )(a313-+m52122u313)}

R ;

thy = = T, l+w321'22 o

One sees that the root w; is identical to the unshifted ﬁayleigh
peak given in Eq. (44), indicating that it is free from the effect of
structural relaxation provided that the frequency dependence of \j3 is
ignored. The roots w, correspond to a high frequency doublet with
resonance centered around the real part of w, and the width given by
the imaginary part. The peak frequency as well as the linewidth of

the Brillouin doublet are modified significantly by the effect of

'
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structural relaxation. One notes that Eq. (52) reduces to Eq. (43) [

in the limit of w_tv, =»o0.
g &
A new feature in this case is the presence of an additional
central peak with its width given by Eq. (53). The width of this

central peak is determined by the structural relaxation t. and shows

2
a frequency dependence due to its coupling to the sound wave.

The perturbation solution given in Eqs. (51)-(53) are new results.
These are important for the interpretation of the Brillouin scattering
spectra of viscoelastic liquids. We should remark that these roots
differ from Mountain's results on thermal relaxation arising from the
coupling of internal degrees of freedom of molecules to transla-

10-12

tion. Mountain has shown that such a coupling gives rise to

a relaxation central peak whose linewidth is given bv (vS/v)zl/r,

where Vs and v are the low frequency adiabatic sound velocity and
the sound velocity at finite frequency, respectively; t is the thermal
relaxation time. Our expression is somewhat simpler than Mountain's !
expression for thermal relaxation.

The Brillouin frequency and linewidth given in Eq. (52) also
differ from Mountain's result. Despite the fact that Mountain deals i

with thermal relaxation due to coupling of the internal degrees of

due to coupling of internal as well as external degrees of freedom

)
!
freedom to translation and we are concerned with structural relaxation = ]
)
)
¢

to translation, the difference between the two results is due to : 8
different methods used. In the present work a general statistical

mechanical theory is émployed to analyze the structural relaxation

phenomena, whereas in Mountain's calculation a modified Navier-Stokes

equation allowing for a frequency dependent bulk viscosity is used.
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The validity of the modified hydrodynamic equation in a form given

in ref. 10 is yet to be established.

It is interesting to note that structural relaxation has a
significant effect on the Rayleigh-Brillouin spectrum of a polymer
liquid consisting of flexible polymer chains. At high temperature
the structural relaxation rate is fast compared with the frequency of
the hypersonic wave and in this case the structural relaxation con- ;
tributes mainly to the Brillouin doublet (Eq. (52)) through the
apTy term. In this case the intensity of the structural central
peak is smeared out over a wide range of frequency and is not detect-
able (see Fig. 3A). At intermediate temperature when the structural
relaxation rate 1/r, is the order of (_ the linewidth of the Brillouin

component doublet displays a maximum. This can be demonstrated by

taking the derivative of the imaginary part of Eq. (52) with respect
to t, and then setting the result to zero. This gives 1, in terms
of Vg In this case, the hypersoniz velocity displays considerable

dispersion [c.f. Eq. (52)), and the linewidth of the structural

central peak is approximately equal to wg* Thus the structural central
mode contributes significantly to the intensity of the Brillouin : 7
doublet (Fig. 3B) as well as the intensity in the region between the

unshifted Rayleigh and the Brillouin peaks. At low temperature, on

the other hand, the structural relaxation rate is slow compared to the ‘
hypersonic frequency, but fast compared to the thermal diffusion rate; ﬂ
in this case the structural relaxation manifests itself as a broad line

centered at the laser frequency (see Fig. 3D). Lastly at temperatures

close to the glass transition temperature, the structural relaxation

is very slow or nearly frozen~in, and the structural central peak

e T i St s e ———
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becomes very narrow and hidden under the ordinary Rayleigh diffusion
peak (see Fig. 3F).

We remark finally that the central peak due to structural relaxa-
tion has a close analogy to the dynamic central peak associated with
the structural phase transition in ferroelectric crystals12 as well
as with the central peak in orientationally disordered crystals
which arise as a result of the dynamic coupling of translation
and rotation. In fact the treatment given in the present work is

closely parallel to that given in ref. 13 for dynamics of translations

and rotation in molecular crystals.

C) Rayleigh-Brillouin spectral demsity

Using Eq. (29), we can also obtain an expression for the Rayleigh-
Brillouin spectrum as a function of frequency. For this we separate

A3(w) and A3(w) into real and imaginary parts,
Aa(w) = aj(w) + ia,'" (w) (54)
A3(w) = aj(w) + ia,"" (w) (55)

Substituting Eqs. (54) and (55) into Eq. (29) and after carrying

out some algebraic manipulations, we obtain

NiD1 + N2D2

I (S’m) L (56)
Dlz + Dzz

where

az "(w) a3"(w) 1

Ny =-(1+ % ) (1 + 0 Yw? +aé(m)a§(w)"'(l --Y-)msz (57

T
o (w) o "
Ny = wla, ' (w)tas' (w)+ —%:——— a3'(w) +ay' (w) —%——(w) (58)




rw—"v"—-'"-vlh "
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Qo w(w_)_ G3'(w) ait

D; = -w? {az'(w) +a3'(w) +

' o (59)
a
ar " (w) ~3m—(w)}+—3—(m)wsz
Dy = w[_m2(1+ ?_.ZK_(“&) (1 +%-M) +w52
- (60)
(1 + —3;;591 ) + az'(w)ag'(w)]

The detailed forms of ap'(w), ap''(w), a3'(w) and a3''(w) depend
on the specific time dependence of the memory functions K,,(t) and
K33(t). There are techniques available to obtain the asymptotic
frequency dependence of Aj(w) and A3(w). For example if short-time
dynamic processes are important in determining the memory functions,
one may expand Xi(w) in a power series in u-l and calculate the
moments of memory functions.14 On the other hand, if the long-time
dynamic processes are important, we may expand ki(w) in a power series
in w. However, for the purpose of illustrating the effect of structural
relaxation it suffices to use here the functional forms given by Eq.
(41) for the calculation of the Rayleigh-Brillouin spectrum in the
entire frequency region.

In the next section, we shall apply the present theoretical re-
sults to interpret the Rayleigh~Brillouin spectrum of a highly viscous
polymeric liquid such as polypropylene glycol. We shall show that the
structural relaxation plays a veryimportant role in determining I(g,w)
and in order to account for the experimental results it is very
important to retain the frequency dependence in Xj(w), although the
frequency dependence of A3(w) is unimportant. In the subsequent

section we supress the frequency dependence of A3 and equate it to
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IV. Comparison With Experimental Results

We now use Eq. (5€¢) together with Eqs. (57)-~(60) and Eq. (41)
and a least squares fitting procedure to calculate the Rayleigh-
Brillouin spectrum, using the parameters suitable for polypropylene
glycol (PPG). The data considered are the frequency shift, linewidth
and the Landau-Placzek ratio as a function of .emperature.

For the comparison we first use a trial and error procedure to
compute the spectrum at high temperature such that the theoretical
spectrum fits the measured one. This gives a set of reference data
points needed for subsequent calculations of the theoretical spectra
at other temperatures.

The reference data set comsists of Wgs T2, Q2 and DT appropriate
for the high temperature (400 K) spectrum of PPG M.W. 425. To
obtain results for the spectra at other temperatures, we assume that

T2 has an Arrhenius temperature dependence
Ty = 12° exp(Ey/kr) (61)

This assumption is justified from the experimental results for
PPG.4 Thus instead of T, we replace it by 12° and E,; for caiculating
the results at other temperatures.

Since accurate experimental data for the frequency shift (wB),
linewidth (T') and intensity are available for PPG-QZS,1 we have found
that the following least squares fitting procedure is most economi-
cal in computer time. We used Eq. (56) to obtain theoretical values

for wa and ' and then compared with the observed wg and T until the

SR—

B TR

|
|
|
|
|




19

standard deviation (in the least squares sense) between the experi-
mental and theoretical values are simultaneously minimized. This
procedure gives a tentative set of parameters Wes To Ea, a2 and
DT’ which are consistent with the observed frequency and linewidth
values. To improve the theoretical fit, we calculate the intensity
and compare the results with the experimental data. This is accom-
lished by a fitting cycle to check the self-consistency of all
experimental data available. In cycle 1, we use the best values

parameters w, r2°, E,, a2 and D This set gives a good fit to all

T

values of we and ', but it may not fit the intensity properly. The

set of parameters is then varied to generate the best integrated inten-
sity results for Rayleigh and Brillouin peaks. In this process, a new
get of parameters are generated to fit the frequency and linewidth.

The cycle is repeated until the set of parameters fits simultaneously

all of the w,, T and intensity results.

B’

In the process of curve fitting, we have found that the intensity
of the central Rayleigh component is affected significantly by the
value of DT' Furthermore, we have also found that the values obtained

for D, can be correlated with an Arrhenius equation given by

&
o =E_°/KkT
DT DT e ¢t

with DT° = 0.98(GHz)/q? and Et° = 3.16 kcal/mole. This gives the value

(62)

of nyxzequal to 4.9 MHz at 300 K. The theoretical fits to the experi-

mental data of wg and T are also improved if the temperature dependence

of wg is allowed. This is expected as the adiabatic sound frequency is

expected to decrease with increasing temperature. Thus for convenience

we assume

w = ms°(1—mr) (63)
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The best values of the parameters are w_ = 1l GHz and m = 0.0017 £,
S

/ /

o -1l
Using these we obtain Ea = 4.4 kcal/mole, t, = 2.36x10 sec and

o B P 3 o
ay = 0,438 w_© for the best Fie. a, is fairly insensitive to the

temperature change. We have tried other temperature dependences for

wg and have also obtained good fits to both w, and ', but the results

B
obtained for Ea differ within 15% at the most. This is about the

experimental error involved in determining Ea. With all of the para-

meters available, we have calculated the wy and ' values as a function
of temperature. The results are shown in Fig. 1, together with the
experimental values for comparison. The agreement is quite good. The
slight deviation for the range between 300 and 350 K is due to the
assumed simple form of Eq. (63). The calculated Landau-Placzek values
for PPG-425 for the temperature range between 185 and 400 K are shown
in Fig. 2, together with the experimental results.

Due to the presence of the structural relaxation, a few words
about the determination of the Landau-Placzek ratio are in order. In
Fig. 2, the calculated intensity ratio excludes the intensity contri-
bution from the structural central peak. While this is easily done
theoretically, it is difficult to accomplish experimentally, especially
in the temperature region where the structural relaxation is most
pronounced. Efforts were made to minimize the contribution from the
structural relaxation in determining the accurate Landau-Placzek ratio.
This was done by first integrating the Brillouin intensity beyond
the peak frequency. The total Brillouin intensity of each peak is
assumed to be twice this value. This thus neglects a small correction
due to lineshape asymmetry, and due to the intensity at the wing from

the structural central peak. The error arising from this procedure
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is insignificant at both high and low temperatures. However, in the

temperature range where the structural relaxation is most significant
the error is somewhat larger. The Rayleigh intensity was determined
by first extrapolating the wing of the Rayleigh peak to the baseline
and then integrating the intensity. This tends to over-estimate the
intensity by including a small contribution due to the structural
central peak, but the error is believed to be small in this case. The
Landau-Placzek ratio data determined this way are thus more reliable
than those reported in ref. l. One notes in Fig. 2 that the agreement
between theoretical and experimental results is rather good. The
larger discrepancy in the temperature range between 220 and 300 X is
presumably due to the experimental difficulty in separating accurately
the Rayleigh and the Brillouin intensities from the complete experi-
mental spectra.

Using the obtained best set of parameters appropriate for
PPG-425, we have then computed the Brillouin-Rayleigh spectra using
Eq. (56), together with Eqs. (57)-(60) and Eqs. (49) and (50).

Six representative theoretical spectra at 400, 350, 310, 280, 240

and 200 K are shown in Fig. 3A-F. These spectra clearly demonstrate
the evolution of the effect of structural relaxation on the Rayleigh-
Brillouin spectrum. These spectra when convoluted with the instru-
mental function are in good agreement with the observed spectra, thus
indicating that the present theory is adequate in interpreting the
Rayleigh-Brillouin scattering of polymeric liquids in which the
structural relaxation plays a very important role. In Fig. 3, one
notes that while the width of the Brillouin doublet increases with

decreasing temperature between 400 and 310 K, there is an increase

i




22

in the intensity in the region between ﬁhe Ravleizh and the Brillouin
peaks. This is associated with the central peak due to structural
relaxation, similar to the Mountain peak observed in simple molecular
liquids.ls’16 However, as the temperature is decreased further, the
Brillouin peaks narrow and the structural central peak becomes
gradually localized to the wing area of the thermal diffusion Rayleigh

peak. The behavior of the structural central peak is remarkably

sensitive to the temperature variation.

V. Summary and Conclusion

\

We have used the linear response theory to analyze the Rayleigh-~
Brillouin scattering spectrum of a viscoelastic liquid. The theory
includes a complete set of dynamic variables involving density,
velocity and energy fluctuations. An exact equation including the
effect of structural relaxation has been obtained. In the fast
relaxation limit it is shown that the Rayleigh-Brillouin scattering
is identical to that predicted by the classical hydrodynamic equation.
New results are obtained for the slow relaxation case. In this case
it is shown that in addition to the unshifted Rayleigh peak a new
central peak is also present. This new peak is due to dynamic
coupling of the translational motions of the scattering particles
with collective structural relaxation, in analogy to the Mountain
peak which arises from the coupling of translation to intramolecular
vibration of simple molecules. Our theoretical results for the
Brillouin peak and the central peak linewidth differ from those ob-
tained by Mountain in the case of thermal relaxation. Mountain's

calculation is based upon modified hydrodynamic equations and ours is
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in terms of the generalized Langevin equation derived by using Zwanzig-

Mori's projection operator technique. The structural central peak
considered here is analogous to the dynamic central peak associated
with the phase transition in solids.

We have described the evolution of structural relaxation and its
effect on the Rayleigh~Brillouin spectrum. The structural central
peak is most pronounced when the frequency dispersion and the line-
width maximum are present. We have also used the theoretical result
to calculate the Brillouin frequency shift, spectral linewidth and
the Landau-Placzek ratio as well as the entire Rayleigh Brillouin
spectrum as a function of temperature. We show that the theory

including structural relaxation gives a good fit to the experimental

results of polypropylene glycol.
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Appendix

We show here that the dynamic variable £3 defined in Eq. (8)

in the text is proportional to the temperature fluctuation.

Since 8p(q) and Sde(q) are related to Sp(r) and Se(r) by7
Sp(q) = J Gp(r)eic."’f d3r (A-1)
= - <
and
de(q) = J GE(r)eiEl'E a3r (A-2)

v
where Gp(f) and Ge(g) are respectively the fluctuations in number
density and energy density.

If the system under consideration is in local equilibrium, then

from the first law of thermodynamics, we have

€ *Pg

6 = T 8s+( ) 8p (A-3)

0
where To’ po, € and p, are respectively the temperature, number
density, energy density and pressure at equilibrium. d&s = §S/V,
V being the volume and §s the entropy fluctuation per unit volume.

Using thermodynamics, one also has

m C
8p + —— &T (A=4)
poxT To

o

68--

8§p and 6T are independent thermodynamic variables so that <§p8T> = 0}7

Substituting Eq. (A-4) into Eq. (A-3), we obtain

e + P o
¢ = [( 2 °) ——3—] 80 + mo C 6T (A-5)

)

o} poXT
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and ’
e A%
<Sedp> = [( )- 2| <(5p)2> (A-6)
E 0 Xy ,
After establishing Eq. (A-6), we consider £3 (Eq. (8)) )
1 1 1
£3 -( ) se(q) - ~—t—
/T=nz) <|8e(q)|2>3 * <|6p)2>
(A-7)
<8e(q)dp*(q)>8p(q)
Using Eqs. (A-1) and (A-2), we can write
<8e(q)dp*(q)>
3 - !
= [ J d3rd3r’ eig (f L ) <8e(r)dp(r')>
eo'+Po aTo 3430 1q*(x-r")
= - d rd’r' e ~ ~ '
[ P X <§p(r)dp(r')>
L ] 0
[¢ +p aT
= g 2 - = | <|aplq)|?s (A-8)
[0 oX B
Substitution of Eq. (A-8) into Eq. (A~7) gives
1 e°+po 2Ty
3= li 55(‘1) = T
<|8e(q)|%>* Y1 =n2 & o PoXr
69(3)] (A-9)
Using Eq. (A-5), one can reduce this equation immediately to
£3 = B 5T(q) (A-10)
<|se|2>® /TonZ -

Thus £3 is proportional to S8T(q).
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Figure Captions

Comparison of the measured and calculated Brillouin
peak frequency and linewidth data of PPG 425 as a

function of temperature.

Comparison of the measured and calculated Landau-
Placzek ratio data of PPG 425 as a function of tem-

perature.

Simulated Rayleigh-Brillouin spectra for PPG 425.
(A) at 400 K, Towg = 0.12; (B) at 350 K, Tw, = 0.34;
(C) at 310 K, Towg = 0.91; (D) at 280 K, Tow, = 2.2

(E) at 240 K, Taw, = 9.1; and (F) at 200 K, o - 64.
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Figure 3.
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